

Instructions for Use of RS485 Temperature &

Humidity Sensor

Introduction

This is a high-precision industrial-grade RS485 temperature and humidity sensor. It

uses high-quality digital integrated transducer and reliable digital processing

circuit to convert the temperature and humidity in the environment into

corresponding RS485 signals. And it can reliably carry out centralized monitoring

jobs with the host computer system.

Featuring a wide measurement range, a high detection accuracy and a fast

response speed, the module supports temperature detection of -40 to 120 degrees

and humidity detection of 0 to 99.9% RH. Fully wrapped by the aluminum alloy

shell, the sensor is waterproof and heat resistant, which makes it suitable for harsh

environments. Besides, its probe employs a breathable and dust-proof design that

effectively protects the internal circuit board and prolongs the service validity

period.

The product has remarkable long-term stability, low latency, high resistance to

chemical pollution and superior repeatability. It is an ideal solution for accurately

measuring relative humidity and temperature in HVAC(Heating, ventilation, and air

conditioning) applications. This sensor can be widely used in building automation,

climate and HVAC automatic control, climatology stations in museums and hotels,

closed-loop control of HVAC systems, etc.

Specification

 Temperature Measurement Range: -40 ~ 120℃

 Humidity Measurement Range: 0 ~ 99.9%RH

 Temperature Accuracy: ± 0.3°C (25°C)

 Humidity Accuracy: ± 2%RH (25℃)

 Sampling Cycle Period: 3 sec

 Power Supply Voltage: 12 ~ 36V (DC)

 Product Size: 200mm(L) × 15.7mm(D) / 7.87×0.62 inch

 Output Signal: RS485 signal

 Communication Protocol: standard MODBUS RTU protocol

 Baud Rate: 9600 (default)

 Display Resolution: Temperature: 0.1℃; Humidity: 1%RH

 Sensitivity Attenuation Value: temperature ＜ 0.1 ℃ /year; humidity ＜

0.5%RH/year

Pinout

Lead line Name Description

① A+ Yellow: FG6485 A end

② V+ Red: Power supply positive input

③ GND Black: Power supply negative input

④ B- White: FG6485 B end

① Yellow

② Red

③ Black

④ White

Wiring Diagram

RS485 Communication Protocol

1. Internal Register Mapping Address

Register

information

Address Register

information

Address

Humidity 0x0000 Device model 0x0008

Temperature 0x0001 Version number

(lower 8 bits)

0x0009

Reserve 0x0002 Device ID high 16

bits

0x000A

Reserve 0x0003 Device ID low 16

bits

0x000B

Reserve 0x0004 Temperature

upper limit alarm

value

0x000C

Reserve 0x0005 Temperature

upper limit alarm

enable

0x000D

Reserve 0x0006 Temperature lower

limit alarm value

0x000E

Reserve 0x0007 Temperature lower

limit alarm enable

0x000F

Humidity upper limit

alarm value

0x0010 Reserve 0x0018

Humidity upper limit

alarm enable

0x0011 Reserve 0x0019

Humidity lower limit

alarm value

0x0012 Reserve 0x001A

Humidity lower limit

alarm enable

0x0013 Reserve 0x001B

Reserve 0x0014 Reserve 0x001C

Reserve 0x0015 Temperature correction

value update

0x001D

Reserve 0x0016 Humidity correction

value update

0x001E

Reserve 0x0017 Reserve 0x001F

2. Supported function codes

0x03: read multiple registers

0x10: write multiple registers

Read command:

Host frame format

Transmitter address + 0x03 + register start address (2 bytes) + number of registers

(2 bytes) + CRC low bit + CRC high bit

Transmitter return format

Transmitter address+0x03+number of bytes returned (1 byte)+data 0+..+data

n+CRC low bit+CRC high bit

Write command:

Host frame format

Transmitter address + 0x10 + register start address (2 bytes) + number of registers

(2 bytes) + number of bytes sent (1 byte) + data 0 +... + data n + CRC low bit + CRC

high bit

Transmitter return format

Transmitter address + 0x10 + register start address (2 bytes) + number of registers

(2 bytes) + CRC low bit + CRC high bit

Instructions for writing function codes:

1. In the internal register mapping address, only the addresses 0x000C-0x001E can

be written, and others are prohibited.

2. In address 0x000C-0x001B, if the host data writing is out of the range or not in

accordance with the control logic, the transmitter register will not update the

values but keep the original values.

3. 0x001C, 0x001d, 0x001E, the three registers, will be limited to boundary values if

they exceed the range.

4. The host should send the actual value magnified 10 times to change decimal into

integer.

3. Error code prompt

0x81 illegal function code (unsupported function code)

0x82 read illegal address

0x83 write illegal data (write to an unwritable register address or write-forbidden

transmitter)

4. Examples for communication read instruction

The format of the message sent by the host: 01 03 00 00 00 02 C4 0B. The

following table is an introduction to the function codes:

Send by Host Number of bytes Message to send Remarks

Slave address 1 01 Send to the slave

with address 01

Function code 1 03 Read register

Initial address 2 0000 Start address is

0000

Read Number of

registers

2 0002 Read 2 registers, a

total of 4 bytes

CRC code 2 C40B The CRC calculated

by the host, the

low byte first(C4)

and high byte

behind(0B)

The message format returned by the product response: 01 03 04 Humidity (16 bits)

Temperature (16 bits) CRC check code

The following table is an example of returning a set of temperature and humidity

data: 01 03 04 01 D7 00 D6 CA 69

Slave response Number of bytes Message returned Remarks

Slave address 1 01 Data from address

01

Function code 1 03 Read the register

Number of bytes

returned

1 04 Returned 4

registers, total 4

bytes

Register 0 high

byte

1 01 The content of

address 0x00

(humidity high

byte)

Register 0 low byte 1 D7 The content of

address 0x00

(humidity low

byte)

Register 1 high

byte

1 00 The content of

address 0x00

(temperature high

byte)

Register 1 low byte 1 D6 The content of

address 0x00

(temperature low

byte)

CRC code 2 CA69 The returned CRC

calculated by the

slave, the low

byte first(CA)

Temperature and humidity output format and calculation example

The temperature and humidity resolution are 16-Bit, and the temperature and

humidity are output in the actual positive and negative format, and the numerical

value is 10 times the actual temperature and humidity value;

Humidity: 01D7 = 1×256+13×16+4= 471 => Humidity = 471÷10=47.1%RH

Temperature: 00D6 = 13×16+6= 214 => Temperature = 214÷10 = 21.4℃

Calculation of CRC code

1. Preset a 16-bit register as hexadecimal FFFF (that is, all 1); call this register CRC

register;

2. The first 8-bit binary data (that is, the first byte of the communication

information frame) XOR the lower 8 bits of the 16-bit CRC register, and then put

the result in the CRC register;

3. Shift the contents of the CRC register one bit to the right (towards the low bit)

and fill the highest bit with 0, and check the shifted bit ;

4. If the shifted bit is 0: repeat step 3 (shift one bit to the right again); if the shifted

bit is 1: the CRC register XOR the polynomial A001 (1010000000000001);

5. Repeat steps 3 and 4 until you move 8 times, so that the entire 8-bit data is

processed;

6. Repeat steps 2 to 5 to process the next byte of the communication information

frame;

7. After calculating all the bytes of the communication information frame according

to the above steps, exchange the high and low bytes of the resulting 16-bit CRC

register;

8. The final content of the CRC register is: CRC code.

CRC Code Calculation Program in C Language

Note: This program calculates the CRC code of the bytes of first len length in * ptr.

unsignedshortcrc16(unsignecdhar*ptr, unsignedcharlen)

{

unsignedshortcrc=0xFFFF;

unsignedchari;

while(len--)

{

crc ^=*ptr++;

for(i=0;i<8;i++)

{

if(crc& 0x01)

{

crc>>=1;

crc^=0xA001;

}else

{

crc>>=1;

}

}

}

returncrc;

}

Code Description

Set slave address: Each terminal should have an address according to the ModBus-RTU

Protocol. Follow the steps below to disassemble the product, then you can use the

8-digits DIP switch inside to set the communication address as per your needs.

Calculation: the DIP digits1~8 respectively correspond to number 1, 2, 4, 8, 16, 32,

64, 128(as shown in the figure above); Add all the values corresponding to the DIP

digits 1-8 dialed to NO , that is the value of the address code. For example:

 Figure 1 Figure 2 Figure 3

In figure 1, address=1 (Only DIP digit 1 is dialed to ON, and it corresponds to number 1,

so the address is 1.)

In figure 2, address=2(Only DIP digit 2 is dialed to ON, and it corresponds to number 2,

so the address is 2.)

In figure 3, address=13 (DIP digits 1, 3, 4 are dialed to ON, so the address should be:

1+4+8=13.)

Note: Turn off the transmitter before selecting measurement range by jumper.

